37 research outputs found

    Time-variant graph learning and classification

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.Graph classification is an important tool for analyzing data with structure dependency. In traditional graph classification, graphs are assumed to be independent where each graph represents an object. In a dynamic world, it is very often the case that the underlying object continuously evolves over time. The change of node content and/or network structure, with respect to the temporal order, presents a new time-variant graph representation, where an object corresponds to a set of time-variant graphs (TVG). A time-variant graph can be used to characterize the changing nature of the structured object, including the node attribute and graph topological changing over time. Therefore, the evolution of time-variant graphs could be either network structure or node content over time. In this dissertation, we formulate a new time-variant graph learning and classification (TVGLC) task. To learn and classify time-variant graphs, the vital steps are feature extraction, modeling and algorithm design. However, for time-variant graph classification, frequent subgraph features are very difficult to obtain. Because one has to consider the graph structure space and the temporal correlations to find subgraph candidates for validation, the search space for finding frequent subgraph features is infinite and unlikely to obtain stable structures. Secondly, graph structures that imply subgraph features may irregularly change over time. Thus, to extract effective and efficient features is a great challenge for TVGLC. In addition, carrying out applicable models and algorithms to cater for the extracted features for TVGLC is also a challenge. Considering the above challenges, this research aims to extract efficient features and design new algorithms to enable the learning of the time-variant graph. Because time variant graphs may involve changes in the network structures and changes in the node content, which complicate the algorithm designs and solutions, our research employs a divide and conquer principle to first solve a simplified case where (1) network topology is fixed whereas the node content continuously evolves (i.e., networked time series classification). After that, we advance to the setting to (2) evolving network structure and propose solutions to TVGLC with incremental subgraph features. To enhance the subgraph feature exploration for time variant graph classification, we propose (3) graph-shapelet features for TVGLC. Last, but not the least, we study (4) an application of online diffusion provenance detection. Temporal Feature Selection on Networked Time Series: As the time-variant graph can be graph node content and/or graph structure evolution, we first study a simple case where the structure is fixed but the node content continuously evolves. The problem forms time series data when the node content changes over time, and we combine time series data with a static graph to form a new problem called networked time series. We formulate the problem of learning discriminative features (i.e., segments) from networked time series data considering the linked information among time series (e.g., social users are taken as social sensors that continuously generate social signals (tweets) represented as time series). The discriminative segments are often referred to as shapelets of time series. Extracting shapelets for time series classification has been widely studied. However, existing works on shapelet selection assumes that time series are independent and identically distributed (i.i.d.). This assumption restricts their applications to social networked time series analysis. This thesis proposes a new Network Regularized Least Squares (NetRLS) feature selection model, which combines typical time series data and user network graph data for analysis. Incremental Subgraph based TVGLC: To learn and classify the time-variant graph with network structure evolve, the key challenges are to extract features and build models. To date, subgraphs are often used as features for graph learning. In reality, the dimension of the subgraphs has a crucial dependency on the threshold setting of the frequency support parameter, and the number may become extremely large. As a result, subgraphs may be incrementally discovered to form a feature stream and require the underlying graph classifier to effectively discover representative subgraph features from the subgraph feature stream. Moreover, we propose a primal-dual incremental subgraph feature selection algorithm (ISF) based on a max-margin graph classifier. The ISF algorithm constructs a sequence of solutions that are both primal and dual feasible. Each primal-dual pair shrinks the dual gap and renders a better solution for the optimal subgraph feature set. To avoid the bias of the ISF algorithm on short-pattern subgraph features, we present a new incremental subgraph join feature selection algorithm (ISJF) by forcing graph classifiers to join short-pattern subgraphs and generate long-pattern subgraph features. Graph-shapelet based TVGLC: As graph structure continuously evolves over time, the search space for finding frequent subgraph features is infinite and unlikely to obtain stable structures. To tackle this challenge, we formulate a new time-variant graph classification task, and propose a new graph feature, graph-shapelets, for learning and classifying time-variant graphs. Graph-shapelet is compact and discriminative graph transformation subsequences. A graph-shapelet can be regarded as a graphical extension of shapelets – a class of discriminative features designed for vectorial temporal data classification. In order to discover graph-shapelets, we propose to convert a time-variant graph sequence as time-series data, and use shapelets discovered from the time-series data to find graph transformation subsequences as graph-shapelets. By converting each graph-shapelet as a unique tokenized graph transformation sequence, we can use the editing distance to calculate the distance between two graph-shapelets for time-variant graph classification. Application of Online Diffusion Provenance Detection: In social network analysis, the information propagation graph (i.e., cascade) is a kind of time-variant graph because the information diffusion forms a graph at a certain time and the graph evolves over time. An important application of information diffusion networks (i.e., time-variant graph) is provenances detection. Existing work on network diffusion provenance identification focuses on offline learning where data collected from network detectors are static and a snapshot of the network is available before learning. However, an offline learning model does not meet the needs of early warning, real-time awareness and real-time response to malicious information spreading in networks. In this part, we study a new problem of online discovering diffusion provenances in large networks. To this end, we propose an online regression model for real-time diffusion provenance identification. Specifically, we first use offline collected network cascades to infer the edge transmission weights, and then use an online l₁ nonconvex regression model as the identification model. The proposed methods are empirically evaluated on both synthetic and real-world networks. Experiments on synthetic and real-world data validate and demonstrate the effectiveness of the proposed methods for time-variant graph learning and classification

    Partition Speeds Up Learning Implicit Neural Representations Based on Exponential-Increase Hypothesis

    Full text link
    Implicit neural representations\textit{Implicit neural representations} (INRs) aim to learn a continuous function\textit{continuous function} (i.e., a neural network) to represent an image, where the input and output of the function are pixel coordinates and RGB/Gray values, respectively. However, images tend to consist of many objects whose colors are not perfectly consistent, resulting in the challenge that image is actually a discontinuous piecewise function\textit{discontinuous piecewise function} and cannot be well estimated by a continuous function. In this paper, we empirically investigate that if a neural network is enforced to fit a discontinuous piecewise function to reach a fixed small error, the time costs will increase exponentially with respect to the boundaries in the spatial domain of the target signal. We name this phenomenon the exponential-increase\textit{exponential-increase} hypothesis. Under the exponential-increase\textit{exponential-increase} hypothesis, learning INRs for images with many objects will converge very slowly. To address this issue, we first prove that partitioning a complex signal into several sub-regions and utilizing piecewise INRs to fit that signal can significantly speed up the convergence. Based on this fact, we introduce a simple partition mechanism to boost the performance of two INR methods for image reconstruction: one for learning INRs, and the other for learning-to-learn INRs. In both cases, we partition an image into different sub-regions and dedicate smaller networks for each part. In addition, we further propose two partition rules based on regular grids and semantic segmentation maps, respectively. Extensive experiments validate the effectiveness of the proposed partitioning methods in terms of learning INR for a single image (ordinary learning framework) and the learning-to-learn framework.Comment: Proceedings of the IEEE/CVF International Conference on Computer Vision. 202

    Exploring Spatio-Temporal Representations by Integrating Attention-based Bidirectional-LSTM-RNNs and FCNs for Speech Emotion Recognition

    Get PDF
    Automatic emotion recognition from speech, which is an important and challenging task in the field of affective computing, heavily relies on the effectiveness of the speech features for classification. Previous approaches to emotion recognition have mostly focused on the extraction of carefully hand-crafted features. How to model spatio-temporal dynamics for speech emotion recognition effectively is still under active investigation. In this paper, we propose a method to tackle the problem of emotional relevant feature extraction from speech by leveraging Attention-based Bidirectional Long Short-Term Memory Recurrent Neural Networks with fully convolutional networks in order to automatically learn the best spatio-temporal representations of speech signals. The learned high-level features are then fed into a deep neural network (DNN) to predict the final emotion. The experimental results on the Chinese Natural Audio-Visual Emotion Database (CHEAVD) and the Interactive Emotional Dyadic Motion Capture (IEMOCAP) corpora show that our method provides more accurate predictions compared with other existing emotion recognition algorithms

    Hierarchical attention transfer networks for depression assessment from speech

    Get PDF

    Hilbert Distillation for Cross-Dimensionality Networks

    Full text link
    3D convolutional neural networks have revealed superior performance in processing volumetric data such as video and medical imaging. However, the competitive performance by leveraging 3D networks results in huge computational costs, which are far beyond that of 2D networks. In this paper, we propose a novel Hilbert curve-based cross-dimensionality distillation approach that facilitates the knowledge of 3D networks to improve the performance of 2D networks. The proposed Hilbert Distillation (HD) method preserves the structural information via the Hilbert curve, which maps high-dimensional (>=2) representations to one-dimensional continuous space-filling curves. Since the distilled 2D networks are supervised by the curves converted from dimensionally heterogeneous 3D features, the 2D networks are given an informative view in terms of learning structural information embedded in well-trained high-dimensional representations. We further propose a Variable-length Hilbert Distillation (VHD) method to dynamically shorten the walking stride of the Hilbert curve in activation feature areas and lengthen the stride in context feature areas, forcing the 2D networks to pay more attention to learning from activation features. The proposed algorithm outperforms the current state-of-the-art distillation techniques adapted to cross-dimensionality distillation on two classification tasks. Moreover, the distilled 2D networks by the proposed method achieve competitive performance with the original 3D networks, indicating the lightweight distilled 2D networks could potentially be the substitution of cumbersome 3D networks in the real-world scenario.Comment: Accepted at NeurIPS 202

    Attention-enhanced connectionist temporal classification for discrete speech emotion recognition

    Get PDF
    Discrete speech emotion recognition (SER), the assignment of a single emotion label to an entire speech utterance, is typically performed as a sequence-to-label task. This approach, however, is limited, in that it can result in models that do not capture temporal changes in the speech signal, including those indicative of a particular emotion. One potential solution to overcome this limitation is to model SER as a sequence-to-sequence task instead. In this regard, we have developed an attention-based bidirectional long short-term memory (BLSTM) neural network in combination with a connectionist temporal classification (CTC) objective function (Attention-BLSTM-CTC) for SER. We also assessed the benefits of incorporating two contemporary attention mechanisms, namely component attention and quantum attention, into the CTC framework. To the best of the authors’ knowledge, this is the first time that such a hybrid architecture has been employed for SER.We demonstrated the effectiveness of our approach on the Interactive Emotional Dyadic Motion Capture (IEMOCAP) and FAU-Aibo Emotion corpora. The experimental results demonstrate that our proposed model outperforms current state-of-the-art approaches.The work presented in this paper substantially supported by the National Natural Science Foundation of China (Grant No. 61702370), the Key Program of the Natural Science Foundation of Tianjin (Grant No. 18JCZDJC36300), the Open Projects Program of the National Laboratory of Pattern Recognition, and the Senior Visiting Scholar Program of Tianjin Normal University. Interspeech 2019 ISSN: 1990-977

    Boosting for Real-Time Multivariate Time Series Classification

    No full text
    Multivariate time series (MTS) is useful for detecting abnormity cases in healthcare area. In this paper, we propose an ensemble boosting algorithm to classify abnormality surgery time series based on learning shapelet features. Specifically, we first learn shapelets by logistic regression from multivariate time series. Based on the learnt shapelets, we propose a MTS ensemble boosting approach when the time series arrives as stream fashion. Experimental results on a real-world medical dataset demonstrate the effectiveness of the proposed methods

    Semi-Discrete Social Recommendation (Student Abstract)

    No full text
    Combining matrix factorization (MF) with network embedding (NE) has been a promising solution to social recommender systems. However, such a scheme suffers from the online predictive efficiency issue due to the ever-growing users and items. In this paper, we propose a novel hashing-based social recommendation model, called semi-discrete socially embedded matrix factorization (S2MF), which leverages the dual advantages of social information for recommendation effectiveness and hashing trick for online predictive efficiency. Experimental results demonstrate the advantages of S2MF over state-of-the-art discrete recommendation models and its real-valued competitors
    corecore